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Chapter 1

Preface

Between April 28th and 30th, 2023, the Ethereum Foundation invited a group of researchers to conduct
an initial analysis of the candidate sequential function MinRoot [KMT22]. The purpose of this gathering
was to collectively delve into the intricacies of MinRoot and assess its potential implications for the
Ethereum ecosystem. Preliminary analysis was conducted by Gaëtan Leurent, Maria Naya Plasencia, and
Stefano Tessaro. At the event, the researchers were divided into three groups, each tasked with different
aspects of MinRoot’s evaluation. This report serves as a comprehensive joint summary, presenting the
culmination of the researchers’ intensive efforts during the event. Each chapter within this report has
been thoughtfully composed by a researcher who is not affiliated with the Ethereum Foundation, thereby
ensuring impartiality and transparency in the evaluation of MinRoot. The analysis presented in this
report reveals valuable insights into the strengths, weaknesses, and areas of improvement for MinRoot.
With this report, the Ethereum Foundation aims to foster greater understanding and discussion among
stakeholders, inviting further exploration and scrutiny of MinRoot’s capabilities.

Overview of report. This paper is organized as follows. Chapter 2 focuses on the security analysis
conducted by Attack Group 1. Chapter 3 provides an overview of the security findings from the smaller
Attack Group 2. Chapter 4 digs into the theoretical framework of MinRoot, offering a comprehensive
analysis of its sequential function conducted by Theory Group. Finally, Chapter 5 suggests another way
of looking into the concrete security of MinRoot-like VDFs.
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Chapter 2

Attack 1 Group
Written by Gaëtan Leurent

2.1 Introduction

2.1.1 MinRoot

MinRoot is a proposal for a Verifiable Delay Function (VDF) designed by the Ethereum Foundation [KMT22].
It iterates a simple round function, using a root in a finite field, as shown in Algorithm 1. We denote the
internal state of MinRoot as (u, v), and the round constant as i.

Parameters.

• p: prime number defining the field (p = 2254 + 232 · 0x224698fc094cf91b992d30ed+ 1)

• a: small exponent with p ̸≡ 1 mod a (a = 5 with the given p)

• t: number of rounds (typically in the order of 240)

Implementation. A standard implementation of MinRoot computes the rounds iteratively. The root
is the most expensive operation in the round function; in each round, it is computed using Fermat’s little
theorem (as a

√
x = x1/a mod p−1), with a square and multiply algorithm. We define e = 1/a mod p− 1 so

that the round function is written as a
√
x = xe. Concretely, with a = 3 or a = 5, we have:

3
√
x = x

2p−1
3 (since p ≡ 2 mod 3) 5

√
x =


x

4p−3
5 if p ≡ 2 mod 5

x
2p−1

5 if p ≡ 3 mod 5

x
3p−2

5 if p ≡ 4 mod 5

Exponentiation to the power e with the square and multiply algorithm requires lg(e) ≈ lg(p) squarings.
There are techniques to reduce the number of multiplications (such as the sliding-window method or

Input: u, v ∈ Fp

for 0 ≤ i < t do
(u, v)← ( a

√
u+ v, u+ i)

return u, v

Algorithm 1: MinRoot VDF.

u v

i ⊞

⊞
a
√
·

u′ v′

Figure 2.1: MinRoot round function.
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addition chains), but in the context of a low latency implementation it is better to use a naive binary
decomposition because the multiplications can be evaluated in parallel with the squarings. Therefore the
delay of one round is essentially lg(p) squarings (254 squarings with the proposed parameters), and the
delay of MinRoot is essentially t lg(p) squarings (using two processors).

In practice, Supranational made an optimized ASIC implementation of MinRoot, on a 12 nm node.
Their implementation requires 257 cycles per round, where each cycle essentially correspond to a squaring
and takes 0.9 ns (230 ns per round).

Security claim. The security claim is that MinRoot is a sequential function. Informally, this means
that MinRoot cannot be computed faster by using parallelism. There should be a lower bound to the
delay required to evaluate the function, and the standard implementation with a delay of t lg(p) squarings
should be close to this lower bound (up to a small constant factor).

This can be understood as two distinct assumptions:

1. The round function itself is a sequential function (i.e. the root cannot be computed faster using
parallelism);

2. The iteration is sequential (i.e. there is no shortcut to evaluate t rounds faster than by iterating
them).

Formally, the MinRoot designers claim “128 bits of multitarget VDF security”. This means that a
parallel attacker with up to 2128 processors should not able to evaluate the function with less than half of
the latency of the standard implementation, even with a shared memory that can be accessed in constant
time by all processors.

2.1.2 Notations and Assumptions

We focus on the latency of evaluating MinRoot in parallel from an algorithmic point of view. In partic-
ular we evaluate the latency of the computation and neglect the latency of communication between the
processors, and implementation issues such as large fan-in or large fan-out.

While MinRoot naturally works with modular values in Fp, in this report, we sometimes consider the
values as integer instead; hopefully it should be clear depending on the context. The notation x mod q
refers to the integer in {0, 1, . . . , q − 1} that is congruent to x.

We use lg(x) to denote the base-2 logarithm, and log(x) for the natural logarithm.

Latency Assumptions. We have the following results on low-latency arithmetic operation:

Integer addition: Addition of two n-bit integers has a latency of O(lg(n)) using a carry look-ahead
adder (e.g. the Brent-Kung adder [BK82]).

Addition of k n-bit integers has a latency ofO(lg(k)+lg(n)), using a tree of carry-save adders [Ear65],
followed by a carry look-ahead adder.

Integers multiplication: Multiplication of two n-bit integers has a latency of O(lg(n)) using a tree of
carry-save adders (e.g. a Wallace tree [Wal64]) followed by a carry look-ahead adder.

Modular reduction: Modular reduction of a 2n-bit value modulo an n-bit value has a latency of
O(lg(n)). For instance, the Barett reduction [Bar86] computes the reduction using integer divi-
sion by a constant, which is computed using an integer multiplication.

The results above implies that modular addition and modular multiplication in Fp have a latency of
O(lg(lg(p))). For simplicity, we assume that those operation have the same latency, and consider it as one
unit of time (for practical purpose this time unit is estimated to be 0.9 ns in an ASIC implementation).

4



Adding up to lg(p) ≈ 256 values (integers smaller than p or modular values in Fp) also has latency
O(lg(lg(p))); we assume this also corresponds to one unit.

We also assume that a multiply-and-add operation (x · y + z) has unit latency, because the addition
term can be including in the tree of carry-save adders.

Table lookup in a table with k entries has a latency O(lg(k)) when implemented as a combinatorial
circuit. For small tables (up to lg(p) ≈ 256 entries), we consider this also has unit latency. Larger tables
must be stored in RAM, and have a larger latency. Assuming a DDR RAM with a latency of 5 ns, we
consider that a memory access has a cost of 6 units of time.

When evaluating the number of processors required to implement an algorithm, we consider that one
processor corresponds to a circuit of roughly the size of a modular multiplier. Adding up to lg(p) value
and table lookup with with up to lg(p) values are assumed to require one processor.

2.1.3 Our results

We explore several approaches to compute MinRoot in parallel with lower latency than the standard
implementation. The resulting algorithms achieve a modest modest gain in latency, but require a massive
number of parallel processors; for instance one of our most interesting results (Section 2.4.5) achieves a
speedup factor of 20 (ignoring communication latency) using 229 processors and a memory of size 240.
These results have very little interest outside of VDF analysis, and there is no much literature studying
this problem. Moreover, our algorithms require communication between a large number of processors
which is likely to have a significant latency in practice. Some of our results clearly break the security
claims of MinRoot, but it is unclear whether they can be implemented in practice.

We start by exploring several ideas for low-degree functions in Section 2.2, and for homomorphisms
in Section 2.3. Our best algorithm is a smoothness-based algorithm in Section 2.3.3, that uses the same
basic ideas as a paper for Adleman and Kompella [AK88]. We propose various optimizations to this
algorithm in Section 2.4. We show how this impacts several VDF constructions in Section 2.5. Finally, in
Section 2.6 we briefly discuss practical issues to implement our algorithms and in Section 2.7 we discuss
various modifications to MinRoot to improve its security.

Even if the practicality of our algorithms is debatable, they clearly show that computing a root a
√
x

in Fp is not a sequential operation. Several previous work [LW15, BBBF18, Sta20, KMT22] assume that
there is no parallel algorithm with lower latency than the square and multiply algorithm with latency
lg(p), but our results show that this assumption is wrong.

2.2 Low-latency Evaluation of Low-degree Exponentiation

We start the analysis by looking at methods to compute xd with a small d in parallel faster than with
the standard square and multiply. This can be directly applied to MinRoot if the round function uses xe

with small e rather than a
√
x with small a. Moreover, those techniques can be used to reduce the latency

of the actual MinRoot: an algorithm to compute xd with latency smaller than lg(d) squarings can speed
up the square and multiply algorithm computing xe with arbitrary e.

2.2.1 Algorithm Using the Chinese Remainder Theorem

Given x ∈ Fp for p < 2256, assume we want to compute xd mod p for d ∈ Zp−1 in minimal parallel time
and limited number of processors. We demonstrate how to apply a variant of the CRT-based algorithm
by Bernstein and Sorenson [BS07] for the concrete value of d = 32 = 25. We note that our algorithm is
slightly different from that of [BS07]. For example, unlike [BS07], we do not use the explicit form of the
Chinese remainder theorem, but this does not seem to have a significant impact in our computational
model.
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As the advantage of the algorithm over a standard square-and-multiply algorithm is small at best,
it heavily depends on the computational model. Using the assumptions above, a standard square-and-
multiply algorithm that computes x32 requires 5 time units (5 squarings).

Definitions

Let y = x32, over the integers. We have 0 ≤ y ≤ 2256·32 = 28192. Let d be the smallest value such that
q1 · q2 . . . · qd ≥ 28192, where q1 < q2 . . . < qd are the first d prime numbers. We have d = 759 < 210 and
qd = 5783 < 213. Denote

Q = q1 · q2 . . . · qd.

Our aim is to do computation in the CRT basis defined by Q. Therefore, we define Qi = Q/qi, Mi =
1/Qi mod qi (modular inverse), and yi = y mod qi for 1 ≤ i ≤ d.

Since y ≤ Q, we have by the Chinese remainder theorem:

y =

(
d∑

i=1

yiMiQi

)
mod Q.

We define z =
∑d

i=1 yiMiQi, as a sum of integers.

Overview

Our goal is to compute y mod p = (z mod Q) mod p. We define k = ⌊z/Q⌋, so that z = (z mod Q) + kQ,
with z mod Q < Q and k ∈ Z. Hence

y mod p = (z mod Q) mod p = (z mod p− kQ mod p) mod p

This is the main equation used by the algorithm. In the following, we describe how to compute z mod p
and kQ mod p, while the result is obtained by subtracting them and reducing modulo p.

Computing z mod p

Given x, our goal is to compute

z mod p =
d∑

i=1

yiMiQi mod p,

with yi = y mod qi. We define xi = x mod qi, and we observe that

yi = y mod qi = x32 mod qi = x32i mod qi.

We compute the term yiMiQi mod p as follows. We begin by computing xi = x mod qi by looking
at the binary representation of x and making use of precomputed values of 2j mod qi for j = 0, . . . , 255.
Thus, computing xi requires 256 additions mod qi (with word size about 12 bits), which can be done in
in parallel-time 1 using our assumptions, with a circuit that is smaller than a multiplier. Alternatively,
we can use larger precomputed takes. For example, if we use tables of size 28 (per 8 bits of x), we can
compute xi using 32 processors but this doesn’t reduce the latency under our assumptions (we assume
that a table lookup takes the same time as adding 256 values).

Once we have computed xi, we can use precomputed tables that map xi to yiMiQi mod p. Since
xi < qi, each table has size of at most qd < 213. We assume that the tables are small enough to be
implemented with unit delay, and we consider that the circuit size for one table corresponds to one
processor. Finally, z mod p =

∑d
i=1 yiMiQi mod p can be computed in unit time.

Overall, using precomputed tables as above, computing z mod p can be done using about d ≈ 210

processors in 3 units of parallel time.
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Computing kQ mod p

Recall that z =
∑d

i=1 yiMiQi. Since 0 ≤MiQi < Q, we have

0 ≤ z < Q ·
d∑

i=1

yi ≤ d · qd ·Q ≤ 223 ·Q.

Since k = ⌊z/Q⌋, we have 0 ≤ k < 223.
Moreover we can estimate z/Q to a precision of 20 bits (for example), and then round it down to the

nearest integer. This may introduce errors, which are rare (assuming the input is uniform). However, in
the setting of MinRoot, where (some) computations can be efficiently checked, it is easy to deal with the
rare erroneous computations (see Section 2.6.1).

More specifically, for each i ≤ d, after computing xi = x mod qi as above, we use a precomputed
table that maps xi to the value (yiMiQi)/Q, up to a precision of 20 + lg(d) = 30 bits (overall, we use
13+30 = 43-bit values). We then add these d values in parallel and round the result down to the nearest
integer to estimate k. Finally, we use the precomputed value of Q mod p and compute kQ mod p.

Note that the addition of 210 values introduces an additional error term, but it is unlikely to propagate
beyond 10 bits.

After the computations of xi = x mod qi, the computation of kQ mod p can be performed in parallel
to that of z mod p. Thus, the only overhead in parallel time is caused by the computation of k ·Q mod q,
with unit latency. Since Q mod q is a constant and k is small, the multiplication can be done with lookup
tables, but this does not reduce the latency in our model.

Total Cost

After computing z mod p and kQ mod p, it takes time unit to compute the final result. However, we can
avoid this additional latency by adding z mod p to the result before the final reduction in the modular
multiplication k ·Q mod q (using a multiply-and-add operation).

Overall, the total time is estimated to be 4 units, which improves upon the standard square-and-
multiple algorithm with latency 5 (with d = 32). The number of processors required is about 211.

Example 1: Using CRT to evaluate x32

T = 4 #CPU = 211 speedup : 5/4

Variants

CRT coordinates. We may avoid the initial reductions xi = x mod qi in consecutive computations
of exponentiations by “remaining in CRT coordinates”, i.e., performing all intermediate computations
modulo qj for each j. However, this only saves the initial modular reductions and requires about d ≈ 210

times more processors.

Trade-Off by changing d. We can use the same approach to compute xd mod p for other values
of d. In general, choosing a smaller value of d will result in a smaller gain compared to the standard
square-and-multiple algorithm in our computational model. Yet, a smaller value of d requires fewer
processors, smaller lookup tables and smaller fan-in/fan-out, and hence the cost model may be more
realistic. Choosing a larger value of d has the opposite effect (in particular, we quickly obtain lookup
tables that are too large for a combinatorial implementation and must be stored in RAM).
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2.2.2 Algorithm Using Shares and LUTs

Let us consider that we split each field element into s shares, say, s = 2. We then have that x ∈ Fp is
equal to x = ℓ + h, where for instance ℓ corresponds to the lowest bits and h to the highest bits of x.
The overall idea consists in precomputing some monomials in order to speed up the computation of the
MinRoot-like primitive we consider.

In general, we have that (with operations in Fp)

(ℓ+ h)d =

d∑
i=0

(
d

i

)
ℓihd−i

Suppose that an adversary has precomputed
(
d
i

)
ℓi and hi for all values of i, and for all possible ℓ and h

(recall that ℓ and h live in space that is much smaller than Fp). Assuming also that they have access
to several parallel processors, then it is possible to compute (ℓ + h)d with a latency of 1 lookup, 1
multiplication, and whatever is needed for additions and reduction mod p. Overall, 2d processors are
needed for this to work (to access 2d LUTs in parallel).

If d ≤ 4 such a technique is not interesting. However, as the degree d increases, this technique becomes
more interesting since the latency does not change when d increases, only the number of processors needed
(and the number of tables). Overall, in order to evaluate (h+ ℓ)d, we need:

• 2d parallel processors,

• 2d tables of size roughly p1/2,

• a latency of 1 lookup, 1 multiplication, and many additions.

This can be generalized to a higher number s of shares, in which case the numbers above become

• s
(
d+s−1

d

)
= s
(
d+s−1
s−1

)
parallel processors,

• tables of size roughly p1/s,

• a latency of 1 lookup, lg(s) multiplications (since we don’t have to do them sequentially), and many
additions.

Again, while the overall complexity (and in particular the latency) increases with s, the latency does not
depend on d. Thus, this technique can be become interesting when the degree is higher, in particular if
d is much bigger than s.

Concrete Parameters. For instance, with d = 216 and s = 4, we obtain a circuit to evaluate x2
16

using
4×246 = 248 parallel processors, each using a table of size 264, with a latency of 1 lookup, 2 multiplications
and a modular sum of 246 terms. Using the assumptions in Section 2.1.2, the tables would be stored in
RAM with an access latency of 6 units, and the sum of 246 terms has a latency of 6 (using a tree with 6
levels where each level adds 256 terms). This corresponds to a latency of 6+ 2+ 6 = 14, which is smaller
than a direct evaluation with latency 16.

However the memory requirements of this algorithm are prohibitive, with sd = 218 tables of size 264,
and a total of 248 accesses to the tables.

Example 2: Using shares and LUTs to evaluate x216

T = 14 #CPU = 248 M = 282 speedup : 16/14
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2.2.3 Extension to Multiple Rounds of low-degree MinRoot

We now consider the evaluation of several rounds of a MinRoot variant, where the round function xe uses
a small e rather than e = 1/a mod p− 1 with small a. In such case given input (x, y) the output after r
rounds would be a degree er polynomial P (x, y). This polynomial can be written in a general form:

P (x, y) =
er∑
k=0

k∑
i=0

Akix
iyk−i

In practice it seems most of the terms are present, there are a bit less than er(er−1)/2 terms. (Without
the counters there would be only odd terms if e is odd)

Caveat: the constants Aki will depend on the round counter, so we need a clever way to precompute/-
store them. They would be themselves polynomials of degree at most er−2 in the round counter (it does
not participate in the non-linear part of the 1st round and is only added at the end of the last round). In
the naive implementation they can be all stored in tables for all the 240 steps of the VDF computation.
There might be smarter recurrent way to compute them on the fly.

Attack Complexity

There is clearly a trade-off between the number of processors and the size of tables which is governed by
the number of shares s and the number of rounds r, since the size of tables is exponential in |p|

s and r,
and the number of processors is exponential in s and r (it can be very roughly approximated as ers).

To give a concrete preliminary example, we consider e = 3 (cubing function); the standard implemen-
tation has a latency of 3 units per cycle (2 multiplications and 1 addition). With s = 8, tables would
take T = 3r237 bytes. There are at most e2r/2 terms in the polynomial; each term is the product of an
x monomial and a y monomial and each monomial requires at most

(
3r+7
7

)
processors for a low-latency

evaluation; therefore the number of processors would be P =
(
3r+7
7

)
32r

2 . So for r = 8 get: T ≈ 250 bytes,

P =
(
6568
7

)
· 982 ≈ 276+24 = 2100. The latency is 1 table lookup and 3 multiplications (to compute one

share of one monomial), 10 units to sum 276 shares, 1 multiplication (between the x monomial and the y
monomial), and 3 units for the sum of 224 terms. The total latency is estimated at 23 units, instead of
24 units for the standard implementation.

Recursive Approach

It seems that doing things recursively (ex. 3 stages, bottom stages splitting into 3 shares each time) can
trade-off a bit of latency for large gains in T . For example with two layers of recursion l = 2 and s = 3
(optimal numbers of shares are 2m − 1 which allows to do one layer in m multiplicative steps) we will

need T = er229+5 = er234 bytes and P = ( e
2r

2 )3 = e6r

2 processors. For r = 12, we have T = 248 bytes,
P = 2114, and a latency of 6 + 2 + 5 + 2 + 5 + 1 + 5 = 26, instead of 36.

A rough comparison of the various techniques is shown in Table 2.1. Some additional observations:

• Lots of redundant, overlapping calculations, there should be savings in terms of tables and proces-
sors.

• Dependence of coefficients Aki on the counters needs to be taken into account. Should be done on
the fly by the processor responsible for the specific monomial.

• It seems there is no big difference between Feistel or Matsui-like in terms the number of monomials
they can generate. But it does help to perform the first x1 = x0 + y0 before the rest of the
computation gaining one round in terms of monomials.
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Metric Compressed Recursive l Standard VDF

Tables (in bits) er2
|p|
s |p| er2

|p|
sl |p| 0

Processors
(
er+s−1
s−1

)
e2r

2

(
er+s−1
s−1

)l e2r
2 1

Latency (in |p| bit MUL) 2 + ⌈lg(s)⌉ 2 + l⌈lg(s)⌉ ⌈lg(e)⌉ · r

Table 2.1: Comparison of highly parallel low latency computation with standard VDF (only counting the
multiplications in the latency).

2.3 Low-latency Evaluation of Homomorphism

We now explore algorithms using the homomorphism property of root functions. The algorithms in this
section can be applied to any function f over Fp with the following properties:

• f is easy to precompute

• f(x · y) = f(x) · f(y), ∀x, y ∈ Fp

In particular it can be applied to any monomial function. In the following, we consider roots f(x) = a
√
x

in Fp with p ≈ 2256 as a concrete example, following the MinRoot parameters.
The root is the most expensive operation in MinRoot, and has a latency of 256 squaring in the standard

implementation. Our goal is to evaluate it with smaller latency.

2.3.1 Algorithm using Precomputation

We first propose a simple algorithm using precomputation. It is similar to the precomputation attack
discussed in the MinRoot proposal [KMT22], but we target the root operation instead of targeting the
iterated function MinRoot, and we use a self-randomization property to make the attack successful for
any given input instead of having a multi-target attack.

Precomputation

• Compute a
√
i for i ≤ 2128

• Compute ra, r−1 for a set of 2128 random values r

Online phase Given a challenge x, 2128 processor will do the following in parallel:

1. Pick one of the randomly generated r

2. Compute y = x · ra mod p

3. If y ≤ 2128, then return a
√
y · r−1

This algorithm is similar to the baby step-giant step algorithm to compute discrete logarithms. Due
to the birthday paradox, it requires

√
p = 2128 precomputations, and has a latency of two multiplications

and one table lookup (8 time units using the assumptions of Section 2.1.2), using
√
p = 2128 parallel

processors. Since MinRoot claims 128 bits of security, this algorithm does not violate the claim, but shows
that it is at best tight.

In practice, each of the 2128 processors will use a different r than can be hard-coded in the processor,
together with ra and r−1. The algorithm requires a memory of size

√
p, but only a single processor (the

one that succeeds) will access the memory for each root computation.

Example 3: Using precomputation to evaluate a
√
x

T = 8 #CPU = 2128 M = 2128 speedup : 32
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2.3.2 Algorithm using Subgroups of F∗
p

For any divisor d of (p− 1), we denote by Gd the multiplicative subgroup of F∗
p of order d, i.e.,

Gd := {x ∈ F∗
p : x

d = 1} .

Let F[d,a] be the a-th root in Gd, i.e.

F[d,a](x) = y if and only if ya = x, for any x ∈ Gd .

In other words,
F[d,a](x) = xe with ea ≡ 1 mod d .

Then, F[p−1,a] can be computed from F[d,a] and F[d,ad], when d = (p− 1)/d is coprime with d. Namely,
for any x ∈ F∗

p, we have

F[p−1,a](x) = F[d,ad](x
d)× F[d,a]

(
x(

F[d,ad](x
d)
)a
)

. (2.1)

Indeed, if gcd(d, d) = 1, F[p−1,a](x) can be uniquely decomposed as the product of two elements, g1 in Gd

and g2 in Gd. Then, by definition
x = F[p−1,a](x)

a = ga1g
a
2 ,

implying that
xd = gad2 .

It follows that
g2 = F[d,ad](x

d) .

Moreover

ga1 =
x

ga2
= x×

(
F[d,ad](x

d)
)−a

,

leading to (2.1).
It follows that, up to a few operations, computing F[p−1,a](x) boils down to computing (possibly in

parallel) both F[d,ad] and F[d,a], followed by an additionnal exponentiation by d. This observation can
be used in two different manners. First, basic TMTO algorithms can be improved at the price of an
exponentiation by d, i.e., an additionnal cost of around lg(d) in the latency. A second possible direction
would be to investigate whether computing F[d,ad] could be significantly easier that the original problem.

Time-Memeory Trade-off

An interesting point is that the previous observation enables to divide the computation into two parts:
computing a root in Gd and computing a root in Gd. We set d < d.

In the following, we assume that that d is smaller than the available memory size so that computing
T[d,a] can be done by precomputing a lookup table. Otherwise, the second step of the on-line phase
requires another randomization and needs to be distributed among several processors.

Precomputation

• Build a table Td with all pairs (z, za), z ∈ Gd, indexed by the values of za.

• Build a table Td with triples (z, 1
za , z

ad) for M values of z ∈ Gd. This table is indexed by zad.

The on-line phase then consists of the following two steps.

11



Find the component in Gd

• u← xd

• On each processor, do:

– Pick (r, 1
ra , r

ad) in Td.

– y ← rad × u

– If y is in Td then return (y2, v, y) = Td[y]

Find the component in Gd:

• z ← x× ra × v

• g1 = Td[z]

• return g1×y2
r

This algorithm costs M lg(ad) + d precomputation time, (M + d) memory.
The number of processors is p−1

dM , and the number of operations to be performed is one multiplication
and one table lookup on each processor, as well as one exponentiation by d, a few multiplications and
one additionnal table lookup on a single processor. This corresponds to a lantecy of lg(d) plus a small
constant.

It is worth noting that for d = 1, this corresponds to the usual TMTO algorithm, where M values of
F[p−1,a] are precomputed. Using subgroups allows to divide the number of processors (or the memory) by
a factor d at a cost lg(d) of latency.

In particular, if there is a small factor d of p−1, we obtain an algorithm with fewer than 2128 processors,
breaking the claim of 128-bit security. Since p has a particular shape p = 232q+1, we choose d = 232 and
obtain an algorithm with latency slightly higher than 32, using 296 processors.

Example 4: Using precomputation and subgroups to evaluate a
√
x

T = 48 #CPU = 296 M = 2128 speedup : 5.3

Computing F[d,ad]

In general, there is no particular algorithm to speed up the computation of F[d,ad](y) in the previous

algorithm. For instance, the probablity that the value y = radxd is smooth is not higher for a random
element. It then seems difficult to combine the use of subgroups with some other algorithm exploiting
the fact that computing a-th root is easier for inputs having a specific form (e.g. for smooth integers).

However, for a given value of p, it should be checked that there is no divisor d of p − 1 such that
computing F[d,ad] is much easier than expected. One condition is that the corresponding e such that

ead ≡ 1 mod d has to be close to d. For the MinRoot prime p, no d gives an anomalously small e.

2.3.3 Algorithm using Smooth Numbers

We now describe an algorithm based on smoothness, which is similar to a previous work published by
Adleman and Kompella in STOC ’88 [AK88], using smoothness to compute some arithmetic functions with
logarithmic depth and a large number of processors. Starting with the randomization step of Section 2.3.1,
the main idea is to assume that the value y = x · ra mod p is B-smooth when lifted to the integers, i.e. it
only has prime factors smallers than B, for some bound B.

12



Notations. We use π(x) to denote the prime counting function (π(x) ≈ x/ log(x)), and ρ(x) for the
Dickmann function. In particular, the probablity that an n-bit number is B-smooth is approximately
ρ (n/ lg(B)).

The algorithm works as follow:

Precomputation

• Compute a
√
q for all small primes q ≤ B

• Compute ra, r−1 for a set of R random values r

Online phase Given a challenge x, R goups of processors (each group of size π(B)) will do the following
in parallel (steps 4 and 5 use π(B) processor, and the other steps use a single processor):

1. Pick one of the randomly generated r (one value per group)

2. Compute y = x · ra mod p

3. Lift y to the integers

4. Do trial division of y by all primes q ≤ B, in parallel. Denote {qi} the set of primes that divide
y

5. Compute z =
∏

a
√
q
i
· r−1 mod p (all terms are precomputed)

6. If za = x return z

The algorithm succeeds if the value y at step 2 is B-smooth and square free. In this case y =
∏

qi,
hence a

√
x = a

√
y · r−1 =

∏
a
√
qi · r−1. The probablity of y being B-smooth and square-free can be

approximated as ρ(256/ lg(B))× 6/π2; therefore we choose R≫ π2/6ρ(256/ lg(B)), and we obtain a high
probability of success, thanks to the randomizing at step 1.

This algorithm is similar to index calculus to compute discrete logarithms. Its complexity is sub-
exponential. We now discuss some optimization to make the algorithm more usable in practice.

Allowing Square Factors in y. For a prime q with qe ≤ B < qe+1, we do trial division with q, q2,
. . . qe, and each trial adds a copy of q to the set {qi} if it is successful. With this tweak the algorithm
succeeds as long as y is B-powersmooth, i.e. all prime powers qν dividing y satisfy qν < B. There is no
simple formula to evaluate the complexity of this variant, but with the parameters we use the probability
of being B-powersmooth is essentially the same as being B-smooth; therefore we increase the success rate
by a factor π2/6 ≈ 1.64 (the inverse probability of being square-free) with a very small increase in the
number of processors.

Avoiding the Final Test. In order to avoid the latency of computing za at the end, we can precompute
an approximation of lg(qi) and check that

∑
lg(qi) ≈ lg(y) ≈ lg(p) to detect when y is B-smooth.

Finally, we obtain the Algorithm of Figure 2.2, where black boxes represent processors and green boxes
represent groups of processors. For simplicity, we assume that a single group of processor will succeed
and return a value. The latency is one multiplication, one trial division, and the final multiplication of
several terms. We assume that the multiplication circuit can efficiently deal with empty factor and the
complexity depend on the number of non-unit terms in the product.

Using precomputed Discrete Logarithms. In case it is not practical to build a multiplication
circuit dealing only with the non-empty terms, we propose an alternative approach. Instead of having
each processor returning zi = a

√
qi, we precompute the discrete logarithm of zi in Fp using a generator g.

If we denote the logarithm as νi with zi = gνi (and νi = 0 for empty factors) we can replace the product

13



r = 2

y ← x · 2a mod p

q = 2

If 2 | y
ℓ2 ← lg 2
z2 ← a

√
2

Else
ℓ2 ← 0
z2 ← 1

q = 3

If 3 | y
ℓ3 ← lg 3
z3 ← a

√
3

Else
ℓ3 ← 0
z3 ← 1

q = 4

If 4 | y
ℓ4 ← lg 2
z4 ← a

√
2

Else
ℓ4 ← 0
z4 ← 1

q = 5

If 5 | y
ℓ5 ← lg 5
z5 ← a

√
5

Else
ℓ5 ← 0
z5 ← 1

. . .

ℓ←
∑

ℓq
z ←

∏
zq mod p

If ℓ ≈ lg p
Ret z · 2−1 mod p

. . .

r

y ← x · ra mod p

q = qe0

If q | y
ℓq ← lg q0
zq ← a

√
q0

Else
ℓq ← 0
zq ← 1

. . .

ℓ←
∑

ℓq
z ←

∏
zq mod p

If ℓ ≈ lg p
Ret z · r−1 mod p

Figure 2.2: Algorithm using B-smooth numbers

z =
∏

zi mod p by a sum ν =
∑

νi mod p − 1 and an exponentiation z = gν . Using the assumptions of
Section 2.1.2, the sum of π(B) terms has latency only lg(π(B))/8. To compute the exponentiation with
low latency, we split ν into 32 bytes, and use table lookups for each byte followed by a multiplication tree
with latency 5.

Concrete Parameters. Parameters that minimize the total complexity can be chosen as:

B = 235 R = 224

With those parameters, there are 224 groups of processors, and each group has roughly π(235) ≈ 230.5

processors to do trial division in parallel (a total of 254.5 processors). This succeed with high probability
because the probability that a 256-bit number is 235-smooth can be approximated as ρ(256/35) ≈ 2−21.6 ≫
1/R, and we assume than the probability of being 235-powersmooth is the same.

To verify this estimate, we performed experiments with Bach’s algorithm to generate factored random
numbers [Bac88]. Out of 230 random 256-bit numbers, we observed 367 235-smooth numbers (a fraction
of 2−21.5); all of them are also 235-powersmooth, and 169 of them are square-free (a fraction of 2−22.6).
This closely matches the theoretical estimation. In order to deal with factors qν < B, we actually need
slightly more than π(B) processors but the increase is negligible (230.5 + 214.1).

Assuming that we can neglect the communication time, the latency of this algorithm is one multipli-
cation, one trial division, and about 4 multiplications at the end (assuming there are at most 15 primes
in the decomposition of y), for a total latency of 6 units.

Example 5: Using smoothness to evaluate a
√
x

T = 6 #CPU = 254.5 speedup : 42

Alternatively, parameters can be chosen to minimize the latency:

B = 264 R = 210
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With those parameters the total number of processors is somewhat higher at 268.5 but we expect fewer
factors qi so that the final multiplication only has latency 3 (assuming at most 7 primes), and the total
latency is 5 units.

2.4 Optimizing the Smoothness Algorithm

We now discuss several ideas to optimize the smoothness algorithms. When combined together the number
of processors required is reduced below 230 (with a 256-bit prime), and we can run experiments on the
full algorithm.

2.4.1 Using Almost-smooth Numbers

First, we relax the constraint of y being B-smooth to allow a single medium-size factor, in addition to
an arbitrary number of small factors. Formally, we say that an integer is (B,B′)-almost-smooth (with
B′ > B) if all its prime factors are smaller than B′, and at most one factor is larger than B.

After doing trial division, we detect that y is almost-smooth by checking the magnitude of the rough
part after removing all factors small than B. Since we are mostly interested in cases with B′ < B2, if
the rough part is smaller than B′ then there is a single prime factor between B and B′ (or none if y is
B-smooth). We precompute the roots of all prime numbers between B and B′ and the processor that
finds an almost-smooth y will make a table lookup to recover it.

In practice, we modify the algorithm to compute z−1 in parallel with the computation of z, using

precomputed tables of q
−1/a
i = 1/ a

√
qi. We evaluate z−1 as z̄ ←

∏
q
−1/a
i mod p, and we compute the

rough part as y · z̄. The resulting algorithm is shown as Figure 2.3.
There is no simple analytic way to compute the probability of almost-smoothness, but we can estimate

it from experiments.

Concrete Parameters. Good parameters can be chosen as:

B = 232 B′ = 265 R = 220

Experimentally, the probability of a 256-bit number to be (232, 265)-almost-smooth is about 2−18; this is
a significant increase compared to the probability of begin 232-smooth (ρ(256/32) ≈ 2−24.9). Therefore
with R = 220 there is a high probability of success.

The latency increases because of the table-lookup. Using our assumptions, this has a latency of 6; we
obtain a latency of one multiplication, one trial division, 4 multiplications to compute y ·

∏
z̄q, one table

lookup, and one final multiplication. This algorithm requires a huge amount of memory, but we stress
that the memory is not accessed simultaneously by all processors; for each computation of a

√
x only one

processor (the process that gets an almost-smooth y) makes a memory access.

Example 6: Using smoothness to evaluate a
√
x, with a medium-size factor

T = 13 M = 259.5 #CPU = 248 speedup : 20

2.4.2 Pre-filtering

We observe that the randomizing step (y ← x · ra mod p) uses only one processor per group, so that
many processors sit idle during this step. To optimize the algorithm, we can try several values r in each
group, and keep the value y = x ·ra mod p that seems more promising in each group. For instance, with a
smoothness bound B = 232 as above, each group has π(B) ≈ 227.6 processors. We can pick 227.6 random
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r = 2

y ← x · 2a mod p

q = 2

If 2 | y
ℓ2 ← lg 2
z2 ← a

√
2

z̄2 ← 2
−1
a

Else
ℓ2 ← 0
z2 ← 1
z̄2 ← 1

q = 3

If 3 | y
ℓ3 ← lg 3
z3 ← a

√
3

z̄3 ← 3
−1
a

Else
ℓ3 ← 0
z3 ← 1
z̄3 ← 1

q = 4

If 4 | y
ℓ4 ← lg 2
z4 ← a

√
2

z̄4 ← 4
−1
a

Else
ℓ4 ← 0
z4 ← 1
z̄4 ← 1

q = 5

If 5 | y
ℓ5 ← lg 5
z5 ← a

√
5

z̄5 ← 5
−1
a

Else
ℓ5 ← 0
z5 ← 1
z̄5 ← 1

. . .

ℓ←
∑

ℓq
z ←

∏
zq mod p

z̄ ←
∏

z̄q mod p (z̄ = z−1 mod p)
If ℓ ≥ lg p− lgB′

w ← a
√
y · z̄ (Precomputed, with y · z̄ ≤ B′)

Ret z · w · 2−1 mod p

. . .

r

y ← x · ra mod p

q = qe0

If q | y
ℓq ← lg q0
zq ← a

√
q0

z̄q ← q0
−1
a

Else
ℓq ← 0
zq ← 1
z̄q ← 1

. . .

ℓ←
∑

ℓq
z ←

∏
zq mod p

z̄ ←
∏

z̄q mod p
If ℓ ≥ lg p− lgB′

w ← a
√
y · z̄

Ret z · w · r−1 mod p

Figure 2.3: Improved algorithm using (B,B′)-almost-smooth numbers

r’s in each group and keep the smallest value y = x · ra mod p; we expect y to be of size 256− 27.6 ≈ 228
bits which increases the probability of smoothness.

For a more advanced filtering, we do a smoothness test with a smaller bound B0 < B, and we keep
the candidate y with the largest B0-smooth part (or, we keep candidates with a B0-smooth part larger
than some threshold T ). This filtering requires π(B0) processors, so we can chain it with a first step that
keep the smallest y out of π(B0) candidates. Figure 2.4 shows this pre-filtering algorithm.

Concrete Parameters. Parameters can be chosen as:

B = 232 B′ = 265 B0 = 220 T = 276 R = 212

Experimentally, the probability of having a a 220-smooth part larger than T = 276 is about 2−9.3 for a
256-bit value. With the parameters above, we consider π(B)/π(B0) ≈ 211.3 candidates y in each group,
therefore with high probability one of them will pass the filter. After filtering those candidates, the
probability that they are (232, 265)-almost-smooth is about 2−11.

Using the initial filter the size of y is reduced by 10 bits; this increases the probability to roughly
2−9.5.

Example 7: Using smoothness to evaluate a
√
x, with medium-size factor and pre-filter

T = 14 M = 259.5 #CPU = 240 speedup : 18

2.4.3 Using the Shape of p

The prime used in MinRoot has a special shape p = 232q + 1. Therefore, the low 32-bits of a product
x ·y mod p with y < 232 only depend on the lowest and highest 32 bits of x (and y). We use this property
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r′ = {2, 3, . . .}

r′ = 2

y2 ← x · 2a mod p

r′ = 3

y3 ← x · 3a mod p

. . .

y′ ← min yr
r′ ← argmin yr

q = 2

If 2 | y
ℓ2 ← lg 2

Else
ℓ2 ← 0

q = 3

If 3 | y
ℓ3 ← lg 3

Else
ℓ3 ← 0

q = 4

If 4 | y
ℓ4 ← lg 2

Else
ℓ4 ← 0

. . .

If
∑

ℓq > T
y ← y′

r ← r′

r′ = {r1, r2, . . .}

r′ = ri

yri ← x · rai mod p

. . .

y′ ← min yr
r′ ← argmin yr

q = qe0

If q | y
ℓq ← lg q0

Else
ℓq ← 0

. . .

If
∑

ℓq > T
y ← y′

r ← r′

. . .

(Run smoothness algorithm with y and r . . . )

Figure 2.4: Pre-filtering step (only one CPU group shown)

to improve our algorithm, by precomputing values r with ra < 232 that generate a product x · ra with
zeros in the least significant bits, given the low and high bits of x.

To take advantage of this, we modify the online algorithm to perform two steps of randomization:
first with an arbitrary r0, then with the precomputed value r1:

Precomputation Initialize table T :

• For all xlow < 232, xhigh < 232, consider x = xlow + 2224xhigh

• For all y < 232, if LSB32

(
x · y mod p

)
= 0, set T [xlow, xhigh]← a

√
y

Online phase Given a challenge x:

1. Pick one of the randomly generated r0

2. Compute y0 = x · ra0 mod p

3. Recover the precomputed value r1 = T [LSB32(y0),MSB32(y0)]

4. Compute y1 = y0 · ra1 mod p

This produces a value y1 that is a multiple of 232, therefore the effective length for the smoothness test
is reduced by 32 bits.

Concrete Parameters. We keep the same smoothness parameters as above, but we reduce the number
of groups needed:

B = 232 B′ = 265 B0 = 220 T = 276 R = 28
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By reducing the size of y by an extra 32 bits, we obtain 214-bits values; after filtering candidates with a
220-smooth part larger than T = 276, the probability that they are (232, 265)-almost-smooth is about 2−6,
corresponding to a gain of 3.5 bits.

Example 8: Using smoothness to evaluate a
√
x, with medium-size factor, pre-filter, and the special

shape of p

T = 21 M = 264 #CPU = 236 speedup : 12

However this variant requires a memory access to the table T from each processor doing the initial
randomization, therefore this is unlikely to be an improvement in practice with a huge table. Trade-offs
with a smaller table (controlling fewer bits of y) might be more practical; for instance, we can use tables
of size 232 to control 16 bits of y (each processor could hold a copy of table). We obtain 230-bit values,
and the probability that the are (232, 265)-almost-smooth after filtering is about 2−7.6.

In the end this technique produces small improvements, and cannot be used together with the tech-
niques proposed in the following sections.

2.4.4 Rational Reconstruction

Rational reconstruction takes an element x in Fp and writes it as a fraction: x = α/β with α, β ∈ Fp.
Wang proposed an algorithm that finds a solution with α ≈ β ≈ √p, based on the extended Euclidean
algorithm [Wan81]. Indeed, running the extended Euclidean algorithm on x and p generate a series of
relations ui × x + vi × p = wi. Each relation define a rational reconstruction: x ≡ wi/ui mod p. During
the extended Euclidean algorithm, the magnitude of (ui) and (vi) are increasing while (wi) is decreasing;
if we stop after half the number of iterations we obtain ui ≈ wi ≈

√
p.

The online algorithm can be improved as follows using rational reconstruction:

1. Pick one of the randomly generated r

2. Compute y = x · ra mod p

3. Reconstruct a fraction y = α/β

4. Lift α and β to the integers

5. Do trial division of α and β

If α and β are both smooth, we easily deduce a
√
x from precomputed tables:

a
√
x =

∏
a

√
q′j ·
∏

q
−1
a

i · r−1 if β =
∏

qi and α =
∏

q′j

Since α and β are of the order of
√
p, they are significantly more likely to be smooth and we can use a

smaller bound B. The smoothness test for α and β is done in parallel, using 2× π(B) processors.

Latency of Rational Reconstruction. In practice, variants of the binary GCD algorithm (such as the
the plus-minus algorithm of Brent and Kung [BR85]) should have a lower latency than the Euclidean algo-
rithm because they only use addition and subtractions. Extended versions of the binary GCD algorithm
produce relations of the form ui × x+ vi × p = wi × 2zi , that can also be used in our case.

A recent work [SHT22] studies low-latency implementation of extended GCD algorithms. They de-
scribe an ASIC built on 16nm that performs extended GCD of 256-bit integers with latency 89ns in
constant time. For rational reconstruction, only half the rounds are necessary. Moreover, the constant-
time circuit uses more rounds than required on average to maintain a constant time, and the circuit uses
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16 nm technology while the Supranational implementation of MinRoot uses 12 nm technology. Therefore,
we estimate that rational reconstruction would have a latency of roughly 40 time units.

To reduce the latency further, some GCD algorithms use precomputed tables to reduce the number
of iterations, such as the right-shift k-ary algorithm of Sorenson [Sor94], with only O(lg(n)/k) iterations
using tables of size k. Further work would be needed to evaluate the latency of such algorithms when a
massive number of processors and precomputation is available.

Concrete Parameters. We combine rational reconstruction with the pre-filtering step: we consider
many fractions α/β, and we only keep fractions where α and β both have a large B0-smooth factor.
Parameters can be chosen as:

B = 224 B′ = 245 B0 = 216 T = 228 R = 213

Experimentally, the probability of having a 216-smooth part larger than T = 228 is about 2−2.9 (2−5.8 for
a pair (α, β)). With the parameters above, we consider π(B)/π(B0) ≈ 27.4 candidates y = α/β in each
group, therefore with high probability one pair (α, β) will pass the filter. After filtering those candidates,
the probability that they are (224, 245)-almost-smooth is about 2−5.5 (2−11 for a pair (α, β)).

Example 9: Using smoothness to evaluate a
√
x, with medium-size factor, pre-filter, and rational re-

construction

T = 54 M = 240 #CPU = 234 speedup : 4.7

2.4.5 Parallel Smoothness Test

Another trick can be used to reduce the latency, at the expense of more communication. Instead of
randomizing with y ← x · r3 mod p for random r until the value y is smooth when lifted to the integers,
we can compute y ← x+r·p over the integers, for small r ∈ {0, 1, . . . R}. We obtain slightly larger integers,
but again if one of them is smooth we can compute a

√
y mod p and deduce a

√
x mod p = a

√
y mod p.

The advantage of this appoach is that we can test all candidates y for smoothness simultaneously.
Indeed, we don’t have to do trial division for all x+ r · p and all small prime powers qi. We just have to
compute x mod qi, and we directly know the values of r for which x+ r · p is divisible by qi: those with
r ≡ −x · p−1 mod qi. Since p is prime, it is always invertible mod qi and p−1 mod qi can be precomputed.
Figure 2.5 shows this algorithm.

In a model with free communication (e.g. with a parallel RAM that can be accessed simultaneously
by each processor), this should be quite efficient: each processor doing trial division just has to send a list
of candidates r such that x+ r · p is divisible by qi, and one processor per candidate r will merge the data
(with a parallel RAM: each processor writes the factor found in a region dedicated to a given candidate
r).

The main factor for the complexity of this algorithm is the number of messages to send; on average
it is equal to

∑
qν<B

R
qν . In order to minimize latency, we use multiple processors for small factors qi, so

that each processor has a single message to send; therefore, the number of processor is
∑

qν<B⌈
R
qν ⌉.

When taking communication into account, there will be some cost to pay to route the messages. Using
a hypercube topology (each processor is connected to lg(n) other processors), n processors can route n
messages in probabilistic time O(lg(n)) [Val82].

Concrete Parameters. This idea can be combined with the use of almost-smoothness, but not with
pre-filtering because we consider many values of y simultaneously. We consider the following parameters:

B = 232 B′ = 245 R = 226
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q = 2

x̄← x mod 2
For i ≡ −x̄ · p−1 mod 2
ℓi2 ← lg 2
zi2 ←

√
2

Else
ℓi2 ← 0
zi2 ← 1

q = 3

x̄← x mod 3
For i ≡ −x̄ · p−1 mod 3
ℓi3 ← lg 3
zi3 ←

√
3

Else
ℓi3 ← 0
zi3 ← 1

. . .

q = qe0

x̄← x mod q
For i ≡ −x̄ · p−1 mod q
ℓiq ← lg q0
ziq ←

√
q0

Else
ℓiq ← 0
ziq ← 1

r = 0
y = x

ℓ←
∑

ℓ0q

z ←
∏

z0q mod p

If ℓ ≈ lg p
// y is smooth
Return z

r = 1
y = x+ p

ℓ←
∑

ℓ1q

z ←
∏

z1q mod p

If ℓ ≈ lg 2p
// y is smooth
Return z

r = 2
y = x+ 2p

ℓ←
∑

ℓ2q

z ←
∏

z2q mod p

If ℓ ≈ lg 3p
// y is smooth
Return z

. . .

r
y = x+ rp

ℓ←
∑

ℓrq

z ←
∏

zrq mod p

If ℓ ≈ lg r + lg p
// y is smooth
Return z

Figure 2.5: Parallel smoothness test

We those parameters, the number of processors for trial division is
∑

qν<B⌈
R
qν ⌉ = 228.8, and the average

number of messages to route is
∑

qν<B
R
qν = 228 (slightly higher than π(B) ≈ 227.6). Each candidate y

is a 256 + 26 = 282-bit numer. The probability that they are (232, 245)-almost-smooth is about 2−24, so
that the algorithm succeeds with high probability.

Example 10: Using smoothness to evaluate a
√
x, with medium-size factor, and parallel smoothness

test

T = 13 M = 240 #CPU = 229 speedup : 20

2.4.6 Parallel Smoothness Test and Rational Reconstruction

Finally, we combine the ideas of rational reconstruction, and the parallel smoothness test. First, we use
rational reconstruction on x, and we keep two different fractions x = α/β mod p = γ/δ mod p. Using
intermediate values from the extended Euclidean algorithm, we just keep two consecutive steps, and
we expect α, β, γ, and δ to be slighlt larger than

√
p. We observe that for any r we have (assuming

β + δ · r ̸≡ 0 mod p):
α+ γ · r
β + δ · r

≡ β · x+ δ · x · r
β + δ · r

mod p ≡ x mod p

Therefore, we consider a series of fractions α+γ·r
β+δ·r for small r ∈ {0, 1, . . . R} and deduce a

√
x when α+ γ · r

and β + δ · r (integers of magnitude roughly R · √p) are simultaneously smooth. As in the previous
section, we obtain the divisibility information on all candidates (α+γ ·r or β+δ ·r) with a single modular
reduction.

Concretely, when doing trial division of α + γ · r by qi, we have α + γ · r ≡ 0 mod qi ⇐⇒ r ≡
−α · γ−1 mod qi. Therefore each processor must compute α mod qi and γ−1 mod qi; this differs from
Section 2.4.5 where p−1 mod qi was precomputed. We note that γ is not necessarily invertible in Zqi ,
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but having a non-invertible value is relatively rare and we neglect it to simplify the analysis (this only
introduces some false negatives).

There are several possibilities to compute γ−1 mod qi: we can precompute a table of inverses in Zqi ,
or can compute it on the fly using either the extended Euclidean algorithm or as γφ(qi)−1 mod qi using
Euler theorem. Using the assumptions of Section 2.1.2, the fastest approach is a precomputed table, with
latency 6 units, but it requires a large amount of memory.

Concrete Parameters. We consider the following parameters:

B = 227 B′ = 245 R = 221

With those parameters, the number of processors for trial division is
∑

qν<B⌈
R
qν ⌉ = 223.9 (224.9 to do

trial division of α + γ · r and β + δ · r in parallel), and the average number of messages to route is∑
qν<B

R
qν = 223 (224 when considering both the numerator and denominator). Each candidate y is a

128 + 21 = 149-bit numer. The probability that they are (227, 245)-almost-smooth is about 2−9.2, so that
the algorithm succeeds with high probability after 221 attempts.

We assume that γ−1 mod qi is computed on the fly (using precomputed tables would requires a memory
of size 248.8). Using an extended GCD algorithm or Euler’s theorem, the number of iteration is O(lg(qi)).
Moreover, the extended GCD algorithm implemented in [SHT22] has latency 89ns, less than half the
latency of the square and multiply algorithm implemented by Supranational for MinRoot. Therefore, we
assume that computing inverses in Zqi has latency lg(qi)/2 ≈ 14 units.

Example 11: Using smoothness to evaluate a
√
x, with medium-size factor, rational reconstruction,

and parallel smoothness test

T = 68 M = 240 #CPU = 225 speedup : 3.7

We have implemented (a serialized version of) this algorithm in practice with those parameters, and
it succeeds with probability more than 99% (2 failures out of 1000 trials).

When working with a 128-bit prime p (as in Veedo), the attack requires only 213 processors and 240

memory (with B = 214, B′ = 245, R = 29), which might be implementable in practice (as a reference, the
largest GPUs today have more than 214 cores and some motherboards support 12TB of memory).

2.4.7 Relation with Discrete Logarithm

We observe that the algorithms above are very close to classical algorithms for the discrete logarithm
problem: Section 2.3.1 is similar to the baby step-giant step algorithm [Sha71], Section 2.3.2 is similar to
the Pohlig-Hellman algorithm [PH78], and Section 2.3.3 is similar to index calculus [Adl79].

Therefore, we considered whether more advanced discrete logarithm algorithms could be adapted to
the context of low-latency computation of roots.

Using ECM. The elliptic curve method [Len87] (ECM) is a factorization algorithm that is particularly
efficient to find small factors. It could be used instead of trial division for smoothness tests in the index
calculus type attacks. The idea would be to precompute some curves so that the value you want has
smooth order. But it is unclear how to make this work, or whether the amount of computation for doing
ECM would end up being within the desired constraints.

Using NFS-type algorithms. The complexity of index calculus for discrete log is in the class L[1/2].
There are more efficient algorithms known, whose complexity in the class L[1/3], such as the Number
Field Sieve [Gor93] and the Function Field Sieve [AH99]. variants.
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Further work is needed to evaluate the potential of these ideas, but our impression is that these
algorithms have too many sequential steps to be useful in the context of low-latency algorithms.

2.5 Application to VDF Constructions

The previous algorithms break the sequentiality of several VDF constructions, such as MinRoot [KMT22],
VeeDo [Sta20] and Sloth++ [BBBF18]. An attacker with a large number of processors can compute the
round function several times faster than a legitimate user, if we neglect communication and memory cost.

In particular, it contradicts the security claims of MinRoot: for instance, using the algorithm of
Section 2.4.5, an attacker with 229 processors can compute the round function about 20 times faster than
a legitimate user.

2.5.1 Optimization for Iterated MinRoot

We can save the latency of the initial multiplication used by r′a in the next round if the processor that
succeeds broadcasts the factors to be multiplied (

{
a
√
qi
}
and r−1) rather the final reduced result. Then

each processor would compute the randomized input for the next round as:

(u′ + v′) · r′a = ( a
√
u+ v + (u+ i)) · r′a

=
∏

a
√
qi · r

−1 · r′a + (u+ i) · r′a

This results in a product with one more term, but this does not affect the latency if the number of terms
was not a power of two. The term (u+ i) · r′a is added using a multiply-and-add operation at the end, so
that latency of a MinRoot round is just the latency of the a-th root.

2.5.2 Application to Sloth++

Sloth++ uses square roots in Fp2 . The precomputation attack from Section 2.3.1 can applied directly,
but attacks from Section 2.3.3 and 2.4 rely on smoothness and there is no direct way to apply it in Fp2 .
Instead, we show how to reduce the computation of square roots in Fp2 to square roots in Fp.

We assume that Fp2 is constructed as Fp[X]/
(
X2 + α

)
. An element a of Fp2 is a polynomial a0+a1X.

The square root z of a satisfies:

z2 = a

(z0 + z1X)2 = a0 + a1X

z20 − αz21 + 2z0z1X = a0 + a1X{
2z0z1 = a1

z20 − αz21 = a0{
z0 = a1/2z1 (assuming z1 ̸= 0)
a21
4z21
− αz21 = a0

We denote u = z21 and we obtain a quadratic equation in u:

a21
4u
− αu = a0

a21
4
− αu2 = a0 · u

We solve this equation by computing a square root in Fp, and deduce z0 and z1 using another square root
operation in Fp an inverse and a few multiplications (the inverse in Fp can be computed with the same
low latency algorithm as the square root).
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2.6 Practical Issues

The previous sections mostly consider ideal implementation of VDF from an algorithm point of view. In
this section we briefly discuss some practical issues, such as the communication cost.

2.6.1 Dealing with Errors

Most of the algorithms given above are probabilistic. Since we consider only the round function a
√
x,

and MinRoot has in the order of 240 iterations we need a very high success rate in order to successfully
compute the full MinRoot.

However, it is easy to deal with rare erroneous computations, because the computations can be effi-
ciently checked (if y = a

√
x then ya = x). One option is to repeat the algorithm when it fails; this increase

the latency but if the failure rate is small, the average latency stays small. Another option is to run
the standard implementation in parallel with the attack. If the attack succeeds we have the result with
low latency, and if it fails we wait until the standard algorithm succeeds. If the failure rate is small, the
average latency is still small.

2.6.2 Communication Cost

The analysis above essentially neglects communication cost. In practice, this is likely to be an important
bottleneck, because communication between millions of CPU takes times, and requires a large communi-
cation network; this is likely to dominate the cost of the machine [Wie04]. The setting is quite different
from usual cryptanalytic attacks, often embarrassingly parallel and not requiring communication between
the processors (e.g. brute-force key search). Since our attacks target the round function, all cores must
synchronize at least between each round, to collect the result from the core that succeeded and broadcast
it to other cores (some algorithm also require even more communication). In this section, we briefly
discuss how to implement those communication, and how practical this might be.

Massive Communication Network. In many of the discussed settings with high available parallelism
it is necessary to broadcast a short input (e.g 256 bits) with very low latency to a large set of processors
and later to collect short outputs from a small random subset of “successful” processors.

With more than 220 processors, this would probability require too long wires for such broadcast and
retrieval. Alternatives could be broadcasting wirelessly or even over the optical domain. Indeed the speed
of optics might make it possible to flash with low latency the common input to the field of processors
and later with a few receiving detectors to retrieve output from a handful of lucky processors. There is
ongoing research on integrating optical elements into existing chip design [AMP+18], and the hypothetical
Twinkle factoring device by Shamir also used in optics for finding B-smooth numbers [Sha99].

2.6.3 Physical Constraints

Speed of light. We want the attack to be faster than the standard implementation. Taking the
Supranational implementation as a benchmark, the attack must have a latency of at most 230 ns; during
this time light can only travel 70 meters; if we aim for an attack twice as fast as the standard imple-
mentation light can only travel 35 meters. This limits the physical size of the machine that runs the
attacks: it should be within a sphere of diameter 35 meters. Assuming that each processors has a volume
of 0.025mm2, at most π

6 35m
3/0.025mm2 ≈ 250 processors can communicate within one round.

Cooling limit. Assuming each core consumes 1W of power, the limit above would result in a power
density of 50 GW

m3 , far exceeding the power density of a nuclear reactor.
The largest nuclear reactor in the world is the Taishan EPR, rated at 1.66GW, and 4.59GW of

thermal capacity. This is a major constraint on building nuclear power plants leading us to claim that it
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is near impossible to build a system dissipating more than 100GW of thermal power in one location on
land. Adding an “engineering safety factor of 10” gives a limit of 1TW, leading to a limit of about 240

multiplication cores in a single machine.

Practical engineering constraints. Practical engineering constraints are very likely to lead to
much lower limits than any of the above. It completely ignores power supply, cooling, and space for
interconnect for communications, which will far exceed the size of the cores. However, the point of
designing for “128 bit security” is to account for future improvements by adding safety margins, and so it
is unclear how much practical engineering problems should influence this if they can’t be translated into
clear physical limits.

2.7 Possible Tweaks

In order to limit the impact of these results, we considered some options to construct a VDF that would
plausibly not be affected by the attacks. We have not looked into this alternatives in detail, and we do
not claim that they are secure, but they could offer ideas for further analysis.

Using a low degree round function. Our strongest attacks (in Section 2.3) compute a
√
x with low

latency. This breaks the VDF property because the standard implementation requires about 256
squarings to compute the root. An option could be to use xe with small e in the round function
instead of a

√
x: this reduces the latency of the standard implementation and the algorithms of

Section 2.3 are no longer competitive.

However, the algorithms of Section 2.2 show that a low-degree round function can also be speed up
to a smaller extend using parallel computation.

Using a larger prime p. All the algorithms that we proposed have a complexity (number of processors)
that is at best sub-exponential in p: the number of processors required to obtain a given advantage
increases with p. If p is chosen large enough, it might be possible to achieve a sufficient security
level.

However, further work is required to obtain confidence that there are no better attack, because the
field has barely been explored.

Using extension fields (as in Sloth++). While taking square roots over Fp2 reduces to solving a
quadratic equation over Fp, which is solved by taking square roots over Fp (quadratic formula), this
doesn’t appear to be the case for cube roots or higher. The cubic formula may be useful, but for
roots larger than 3 it isn’t clear how to leverage the attack over Fp. On the other hand, the attack
may generalize more directly to extension fields, using a suitable smoothness basis for the extension
field (similar to index calculus being extended to NFS).

Using elliptic curve groups. Another approach is to use elliptic curve groups for the round permu-
tation because there is no straightforward notion of smoothness, as there is in finite fields. (Index
calculus is less effective for solving DL on elliptic curve groups too). For instance, the round function
could use r × x, with x a curve point and r such that 3r = 1 mod q (assuming the EC group over
Fp has order q). However, between rounds we would need to interleave this with some permutation
on the curve group that is simple/algebraic over Fp and not left multiplication by a constant.

2.8 Other Remarks

We observed that when computing the inverse function, two root computations can be parallelized. This
is a well known property of MISTY networks as opposed to Feistel networks, but it doesn’t seem to have
an impact in the VDF setting.

24



If the round constant is a fixed value c instead being the round counter i, then there are fixed points
in the round function that can be found by solving a simple algebraic expression: the fixed points have
the form z, z + c with za = 2z + c.

2.8.1 On Algebraic Attack

Algebraic attack are briefly mentioned in the MinRoot proposal. We tried to evaluate the complexity of
a simple algebraic attack to speed up the computation of several MinRoot rounds.

We consider k rounds of MinRoot, and we write the input as a pair of polynomial of the output (x, y).
Using the low-degree of the inverse round function, we obtain polynomials P (x, y), Q(x, y), with degree
at most ak. Actually, due to the MISTY structure of the round function, the degree is only ak/2. Then,
evaluating k rounds on input (u, v) is equivalent to solving a polynomial system P (x, y) = u,Q(x, y) = v.

In order to solve such a system, the most efficient way is to compute the resultant of P (x, y) − u
and Q(x, y) − v. We obtain a univariate polynomial R(x) of degree ak, and we can find the root of
this polynomial with sequential complexity quasi-linear in the degree ak by computing the polynomial
GCD between R and xp − x mod R. For a low-latency variant, we can precompute the resultant R as
a polynomial whose coefficients are polynomials in u and v (and potentially the round constant). Then
evaluating k rounds of MinRoot boils down to:

• Substitute parameters u and v in the coefficients of R

• Compute xp − x mod R (using square and multiply for xp mod R)

• Compute the polynomial GCD between R and xp − x mod R

The first step is done in parallel and has low latency. The second step requires further investigation, but
it is typically similar to the last step in complexity.

For the last step, there exist an algorithm to compute the GCD of two univariate polynomials of
degree d in parallel time O(lg3(d)) using d2/ lg2(d) processors [Pan96]. This implies that the latency
of the shortcut attack to evaluate r rounds is in O(k). However, as mentioned in MinRoot proposal, it
is unlikely that the GCD can be computed fast enough to obtain a algorithm faster than the standard
implementation: for instance with k = 20 and a = 3 this would require to compute the GCD of 2
degree-232 polynomials with latency smaller than 5120 field operations.
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Chapter 3

Attack 2 Group
Written by Vincent Rijmen

3.1 Introduction

This report summarises the findings of cryptanalysis group 2. It is based on the notes sent to me by
Christian Rechberger, my own notes and the scribblings on the flip-over.

The main result of our brainstorm was an attack based on masking, as used in side-channel attack
countermeasures. It is explained in Section 3.2. Section 3.3 contains our notes on hardware costs related
to this attack. They are based on discussion with the representative of Supranational. Section 3.4 contains
some other observations.

Before we start, it is worth while to explain our (informal) security model as explained by Dmitry. We
consider a break if an adversary exists that can compute the MinRoot function significantly faster than
an ordinary user can. The adversary is allowed to perform 2128 precomputations, to use many parallel
processors and to use large tables.

An important observation is that an efficient algorithm to compute the MinRoot function without
using precomputations, parallelism or tables is not a break, because then the ordinary user can also use
this algorithm.

3.2 Masking-based attacks

3.2.1 Generalities on masking

By masking we mean the method where the computation of a function f(x) : F → F, is implemented
using t functions fj : Fs → Fs, j = 1, . . . t, with as property that

∀(x1, x2, . . . , xs) ∈ Fs : f

(
s∑

i=1

xi

)
=

t∑
j=1

fj(x1, x2, . . . , xs) (3.1)

Furthermore, (for resistance against side-channel attacks) we require that for each j there is at least one
i such that fj does not depend on xi. The variables xi are called the shares. Masking has been used as
a countermeasure against side-channel attacks but here we exploit that if fj does not depend on xi, then
under certain conditions (discussed below) we can implement fj using a table that is smaller than a table
needed to implement f directly. Since each fj can be computed in parallel, the time for the t lookups is
not larger than the time for one lookup. In order to obtain the total execution time of (3.1) we need to
add the time to execute the sum, which equals ⌈log2 t⌉ additions.
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3.2.2 Masking for faster computation

We now consider a small modification to the masking method, in order to make it suitable for accelerated
computation of f . In particular, we restrict the shares xi to sets Si ⊂ F, where each Si is significantly
smaller than F. The sets Si need to satisfy the following requirement:

∀x ∈ F,∃x1 ∈ S1, . . . xs ∈ Ss : x = x1 + · · ·+ xs

Furthermore, we need an efficient projection function

p : F→ S1 × · · ·Ss : x 7→ p(x) = (x1, . . . , xs)

where x1 + · · ·+ xs = x.
The adversary will precompute tables Tj defined by

∀x ∈ F with p(x)j = 0 : Tj [x] = fj(p(x)).

It follows that the size of the largest table Tj is determined by the cardinality of the smallest set Sj .
We propose to define the sets Sj as follows. Denote n = ⌈log2 |F|⌉. Let m = ⌈n/s⌉ and take

Sj = {x ∈ F|(j − 1)2m ≤ x < j2m}.

This definition allows for an efficient projection function p, that simply mapsm bits of x to each coordinate
xi (after scaling).

Finally, in order to compute f(x), the adversary first computes (x1, . . . , xs) = p(x), then uses the
tables Tj to look up the values fj(p(x)), j = 1, . . . , t and sums the t values.

3.2.3 Application

Let d denote the algebraic degree of the function f . In [PAB+22] a general construction method is given
to determine the functions f1, . . . ft where t = d + 2. The method can be applied recursively on each of
the fj in order to obtain arbitrarily small tables. The depth of the summation will of course increase
accordingly.

For functions with a low algebraic degree, the number of xi that fj do not depend on can be larger
than one. This observation can be used to further reduce the size of the tables. Let f be the monomial

f(x) = xd = (x1 + x2 + · · ·+ xs)
d

Working out this exponentiation results in
(
s
d

)
monomials each containing d variables. Then we can take

each monomial to be a function fj . We obtain t =
(
s
d

)
tables (functions). The size of (the number of

entries in) each table is 2dn/s. A very similar approach can be applied if f consists of several monomials.
The monomial of the largest degree determines t and the size of the tables. Table 3.1 gives some numerical
values.

3.2.4 Extensions

So far we have been using arithmetic masking. We can also use Boolean masking: xd → (x1⊕x2⊕· · ·⊕xs)d
or multiplicative masking xd → (x1 × x2 × · · · × xs)

d. This replaces the summations in (3.1) by XORs or
multiplications.

The multiplication case comes close to what has been done in Attack group 1, but it is not clear
whether it is 100% the same. The unsolved issue is how to define the sets Sj for this case. If p− 1 factors
into small primes then we could use an algorithm based on Pohlig-Hellman to compute tables of roots
modulo factors of p− 1. Both approaches require further research to reach a conclusion.
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degree of f no. of shares no. of tables no. of entries in one table

d s t =
(
s
d

)
2256d/s

2 16 120 232

2 32 496 216

4 64 ≈ 220 216

8 16 ≈ 214 2128

8 32 ≈ 223 264

8 64 ≈ 232 232

Table 3.1: Some numerical values for table size and number of tables.

3.3 Costs

Large tables would have to be stored as DRAM on one or more dedicated chips.
Using 5nm technology we are looking at a latency of 5ns for a single lookup. This seems to be slow,

but the fact that we require really random access implies that burst mode cannot be used to drive down
the average delay. In this technology we can expect a cost of 75M€ per lithography-on-wafer “run.” One
chip could store one table of 225 256-bit entries. Using the example d = 2 and s = 16 from Table 3.1,
we see that we would need about 100 chips to hold one table; we need 120 of these tables. In summary,
our total cost would be almost 1012€. The additional latency for the computation of the sum of the 120
entries was estimated at 1ns.

An alternative approach would be to use 12nm technology. This technology would be available for
2M€ per run, The latency would be twice as high.

Finally, one could also consider the use of much smaller tables such that they fit on the same die.
As conclusion we can state that for hardware implementations it is difficult to predict which approach

will give the best result, because there are many factors in play and it is not easy to develop an intuition
for their relations.

3.4 Additional observations

We use the following notation for the MinRoot round function:

Fi(x, y) = ( 5
√
x+ y, x+ i) (mod p) (3.2)

The following property of Fi(x, y) can easily be verified:

Fi(x, y) = Fi+t(x− t, x+ t)

We see no way to extend this property over multiple rounds.
We denote by G(x, y) a simplified version of MinRoot: without addition of the counter. Hence we get:

G(x, y) = ( 5
√
x+ y, x) (mod p) (3.3)

Then, for any s satisfying s4 = 1 (mod p) (i.e. s is a fixpoint of the root, for example s = p− 1), we have

G(sx, sy) = ( 5
√
s 5
√
x+ y, sx) = sG(x, y) (mod p)

We denote by Hi(x, y) the modified MinRoot function defined as follows

Hi(x, y, z) = ( 5
√
x+ y, x/z + i) (mod p)

This modified function has the following property:

Hi 5√r(rx, ry, r
4/5) = 5

√
rHi(x, y, 1)
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3.4.1 Differentials

We consider two-round iterative differentials (α, β) → (α, β) with a difference γ in the round counter.
The right pairs for such a differential satisfy the following equation:

Fi+1+γ (Fi+γ(x+ α, y + β)) = Fi+1 (Fi(x, y)) + (α, β)

This requires:

5
√
z + α+ β = 5

√
z + β − γ

5
√
u+ β = 5

√
u+ α

(Here z = x + y and u = x + i + 5
√
z.) In order to be useful in differential cryptanalysis, we would need

values for α, β, γ for which these equations have many solutions. It seems unlikely that such values exist.

3.4.2 Nonlinear invariants

We also looked for nonlinear invariants of G. A nonlinear invariant would be a function f such that if an
input (x, y) satisfies y = f(x) then the corresponding output (X,Y ) = G(x, y) would satisfy Y = f(X),
possibly only with some probability. Using (3.3) we get the following equation in f :

x = f
(

5
√
x+ f(x)

)
which is equivalent to

f−1(x) = 5
√

x+ f(x)

We did not find a solution for f . One idea that could be explored further is to impose a certain structure
on f , e.g. f(x) = axb and try solving for a and b.
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Chapter 4

Theory 1 Group
Written by Krzysztof Pietrzak

4.1 Introduction

This document summarises the initial results and ideas discussed by the “theory group” at the Ethereum
VDF event in Lyon April 28-30, 2023.

Contributors. The people present during the discussions were
S. Tessaro University of Washington, USA
Y. Dodis New York University, USA
G. Segev Hebrew University of Jerusalem, Israel
I. Komargodski Hebrew University of Jerusalem, Israel
K. Pietrzak ISTA, Austria
B Bunz Espresso Systems, USA
B Fisch Yale, USA
M. Simkin Ethereum Foundation, Denmark

4.1.1 VDF security

A VDF is a function (y, σ) ← VDF.Eval(pp, x, t) which can be evaluated (with little parallelism) on
any input x and public parameters pp in t sequential steps, and the proof σ (certifying that y is the
correct output) can be efficiently verified. A VDF must satisfy two security properties, sequentiality
and soundness. Informally, sequentially means that computing the output y on a random (or at least
unpredictable) input x and some time parameter t takes t sequential steps (and thus linear in t time)

xi yi

3
√

xi+1yi+1

i

MinRoot

xi yi

π

xi+1yi+1

i

MinRootπ

xi yi

π

xi+1yi+1

1

MinRoot1π

xi yi

π

xi+1yi+1

i

MinRootXπ

xi yi

π

xi+1yi+1

MinRoot1Xπ

xi

xi+1

πi

i

π
1

xi

xi+1

π

π

Figure 4.1: A single round of the MinRoot VDF and MinRootπ, where the cube root is replaced with a
random permutation π. The remaining figures show simplified versions whose analysis can give indications
on the role and efficacy of the design choices made for MinRoot.
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even with massive parallelism, while the soundness requirement states that it should be computationally
infeasible to come with a proof for a wrong statement.

MinRoot is a verifiable delay function (VDF) proposed for the Ethereum ecosystem in [KMT22],
during the meeting we only discussed the sequentiality property of the MinRoot VDF, and for the rest of
the document we’ll ignore the verifiability part.1

4.1.2 (hashed) MinRoot

The MinRoot VDF evaluation function

(xt, x
′
t)← MinRoot.Eval((x0, x

′
0), t)

computes the output by iterating a round function minroot : F× F→ F× F

minroot(xi, x
′
i)→ ( (xi + x′i)

2p−1
3 , xi + 1 ) = (xi+1, x

′
i+1)

shown in Figure 4.1. Here F is a field of size |F| = p where the cubic root 3
√
x = x

2p−1
3 is defined. The

authors of [KMT22] claim 128 bit security for sequentiality when F is a log(p) ≈ 256 bit field. The most
demanding computation in the round function is taking the cubic root, the rationale for choosing this
particular function is the fact that inverting this function (i.e., x → x3) is much faster than going in
forward direction. This is useful when computing the proof σ.

Apart from the basic MinRoot:F×F→ F×F evaluation we will also consider hMinRoot:{0, 1}∗ → F×F

hMinRoot(m, t) = MinRoot(H(m), t)

which simply first hashes the input using a hash function H : {0, 1}∗ → F × F. This not only allows for
an arbitrary input domain, but will also allow us to argue security for a new and stronger “knowledge”
type security notion.

4.1.3 Idealized Models

Proving sequentiality of MinRoot or any other construction unconditionally is too ambitious as it would
require breakthroughs in computational complexity. Instead, we can try to prove the sequentiality in
idealized models. There are at least two natural idealizations for MinRoot.

generic field: Instead of considering a concrete field F, analyse the security in some idealized algebraic
model capturing only generic algorithms over fields.

random permutation: Instead of considering the round function 3
√
, model the round function as a

random permutation π over F. To model the fact that 3
√

can be inverted faster than computed in
forward direction, we will assume that computing π takes 1 unit of time, while inverting it takes
some γ < 1 time (for MinRoot this γ is around 1/128 as taking cube roots ).

random oracle: For hMinRoot we can model the hash function H as a random oracle.

A security proof in a generic group model would imply that any attacker breaking sequentiality (beyond
the proven bound) must exploit the underlying field in a non-generic way. Such a proof would thus be very
meaningful, but proving security in such a model seems very ambitious (see the discussion in [RSS20]).
In this document we will consider the random permutation model, and from now on MinRoot denotes
the construction in the random permutation model, for hMinRoot we additionally model H as a random
oracle.

1For the proof, MinRoot will adapt an approach originally proposed in [BBBF18] and use incrementally verifiable com-
putation to compute such a proof. Here the computation of the proof requires significantly more effort than computing
the output y, but the computation can be parallelized, so the in practice one can create the proof shortly after y has been
computed.
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4.1.4 A Knowledge Type Definition for Sequentiality

The original definition of sequentiality [BBBF18] requires that given some random challenge x and
some time parameter t one almost certainly needs almost t sequential steps to compute the output
y = VDF.Eval(x, t).

One could also consider a knowledge type assumption where we assume that whenever the adversary
outputs (x, t, y) where y = VDF.Eval(x, t) at some timepoint, it must have “known” x some time t ago
(so it could just have run the honest evaluation y ← VDF.Eval(x, t)).

It’s easy to see that MinRoot is not secure in sense as inverting the round function can be done in
γ < 1 time. Concretely, one can just pick any output (xt, x

′
t) and then compute the corresponding input

(x0, x
′
0) ← MinRoot−1(xt, x

′
t) in time γ · t < t. Note that this is not possible for hMinRoot as to find an

input one would have to additionally invert the random oracle, i.e., find some m s.t. H(m) = (x0, x
′
0),

and we will prove that hMinRoot is indeed secure in this stronger sense.
To capture what “knowing” a preimage in this context means we’ll define an extractor, which as

inputs gets the oracle queries made by an adversary so far, and outputs a (ideally small) list F of inputs,
such that for all inputs outside of this list it’s extremely unlikely that the adversary would succeed in
computing the output much faster than by using the regular evaluation algorithm.

It’s not clear if or where this notion could be useful. It’s stronger than the classical notion, for example
it immediately implies variants of the standard notion where the challenge is not necessarily random, but
just needs to have some type of entropy (i.e., we just need the probability of the challenge falling into the
list F to be very small). One can also think of settings where this stronger notion is necessary, but they
are rather artificial and we currently don’t have a natural application where the stronger notion would
be really necessary. Finally, such a knowledge type notion for sequentiality might be useful when arguing
about composition (like in UC).

4.1.5 Stripped Down MinRoot

The main computation in a MinRoot round as illustrated in Figure 4.1 is computing a cube root (or
random permutation π in the idealized setting). Just iteratively taking cube roots would not be a
sequential function (as the group order is known, iterating this any t times just boils down to taking
a single exponentiation), so this operation is embedded in a mode of operation, which is basically the
MISTY mode of operation, with the extension of adding the round number in every round. To understand
which parts of the construction contribute to the security it could be instructive to not just determine the
exact security of (an idealized version of) MinRoot but also “stripped down” versions which are derived
by, e.g. by adding a constant instead of the round, not adding anything at all, omitting the swap of the
right and left half, etc., as illustrated in Figure 4.1.

4.2 Sequentiality

We’ll discuss a few ways in which sequentiality can be defined. The notions we consider will model the
adversary as a tuple A0,A1 where A0 models a potential precomputation and A1 the actual attack. More
precisely, A0 gets as input the public parameters pp and outputs some state st, we then sample some
challenge input(s) which together with st are given to A1, wo then tries to compute the evaluation on
the challenge input faster than the honest evaluation algorithm. As the hardness will come from the ideal
permutation π (and for hMinRoot H), we can assume A0 and A1 are computationally unbounded, and
just bound the way they can access their oracles π, π−1,H. A (potentially parallel) query to π, π−1,H
will take time 1, γ and 0, respectively.
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GAME SEQVDF(A0,A1, λ, t)

1 : pp
$← VDF.Gen(λ, t)

2 : st
$← A0(pp, t)

3 : x
$← Dpp

4 : y′ ← A1(st, x)

5 : y ← VDF.Eval(pp, x, t)

6 : return y = y′

GAME MISEQVDF(A0,A1, λ, t, s)

1 : pp
$← VDF.Gen(λ, t)

2 : st
$← A0(pp, t)

3 : X $← Dpp , |X | ≤ s

4 : (x, y′)← A1(st,X )
5 : y ← VDF.Eval(pp, x, t)

6 : return y = y′ ∧ x ∈ X

Figure 4.2: The sequentiality and the multiple-inputs sequentiality game

4.2.1 bounded query vs. space and why it probably doesn’t matter

We need to bound A0 so it can’t simply output the entire function table of π as the state st to be passed
to A1. Two natural ways to bound A0 are to (1) bound the number of oracle queries A0 can make to
some value q and the state st simply contains all queries A0 learned or (2) bound the size of the state st
that can be passed to the 2nd stage, here A0 can learn the entire function table of π,H, but may only
pass a compressed version of it to A1.

Generally, for a fixed size of the state st, passing all queries as in (1) results in a much weaker
adversarial model than allowing arbitrary precomputation as in (2). For example inverting a random
permutation over a domain of size p on a random value can be done with ≈ p/|st| log(p) queries in (2)
but requires ≈ p− |st| log(p) in (1).

For the sequentiality of MinRoot in the random permutation model this distinction doesn’t seem to
matter: the time-memory trade-off for inverting a random permutation mentioned above can’t be used to
break sequentiality as for breaking sequentiality an inversion must happen in parallel (i.e., non-adaptively),
and here no speedups are known [CHM20].

Ideally we would like to have a lower bound in the bounded space setting (2), and a matching upper
bound in the bounded query setting of (1).

In this note we give an upper bound (Theorem 2) in the bounded query setting which we believe is
close to the real security. We also give a lower bound in (Theorem 1), but this bound is clearly far from
the real one and also in the bounded query model. We leave proving a tight lower bound in the bounded
space setting as an open challenge.

4.2.2 challenge space

The simplest way to define the challenge forA1, i.e., the (x0, y0) on which it must outputMinRoot.Eval((x0, y0, t))
in < t time, is to sample it uniformly at random, this is captured in the SEQVDF(A0,A1, λ, t) security
game. We can also define a multi-challenge game MISEQVDF(A0,A1, λ, t,m) where A1 can pick one out
of m possible challenges to attack. While security in the single challenge game implies security in the
multi challenge game, this reduction loses a factor m in the advantage, while a direct analysis of the
multi challenge game might give better bounds. In this note we prove (in Thm. 1)) a bound in the single
challenge game and then state the bound this implies in the multi-challenge game via the trivial reduction.

4.2.3 A simple birthday type lower bound

In this section we will give a bound on the advantage of any adversary (A0,A1) winning the sequentiality
game SEQVDF(A0,A1, λ, t) game from Figure 4.2 (winning means the output of the game is 1) if the VDF
is MinRoot instantiated with a random permutation π.
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We define a (T0, T1, t
′) adversary as follows. A0 and A1 get oracle access to π and π−1. They have

a computation “budget” of T0 and T1 respectively, where each π query cost 1 and each inverse query to
π costs γ < 1. As discussed before, we’ll just consider the setting where the state st passed from A0 to
A1 contains all the queries made by A0. For A1 not just the computation, but also its sequential time
matters, this is captured by the t′ parameter, which for our theorem can be any value less than t, say
t′ = t − 0.0001. The clock starts when A1 is invoked on the challenge input (x0, y0) in the game, and
whenever A1 makes a query x to π at time τ , it only receives the output π(x) at time τ +1, similarly A1

gets the output π−1(y) to on an inverse query y made at time τ at time time τ + γ.
The bound in the theorem is a simple “birthday bound” type result: the proof exploits the fact that

assuming the adversary never makes a query that collides with any of the t invocations to π required to
evaluate MinRoot before that query is actually known, they will not be able to learn the output.

Theorem 1 (Birthday bound for sequentiality). Let q = (T0 + T1)/γ, then the probability that any
(T0, T1, t

′ < t) adversary (A0,A1) (as defined above) wins the SEQVDF(A0,A1, λ, t) game if the VDF is
instantiated with MinRoot using a random permutation π over some field F is at most

q · t+ 1

|F| − q
≈ t · (T0 + T1)

γ · |F|

This implies a s · q·t+1
|F|−q bound for the multi-challenge game MISEQVDF(A0,A1, λ, t, s).

Proof. Let (x0, y0)← Dpp be the challenge and let (x0, y0), . . . , (xt, yt) denote the states during an evalu-
ation of MinRoot((x0, y0), t). Let i0 . . . it with ij = xj + yj denote the inputs to π during this evaluation.

i0 = x0 + y0 is uniformly random, and also ij is (very close to) uniformly random unless π(ij−1) has
already been evaluated. The only way A1 can learn the correct output (xt, yt) is by learning π(ij) for all
j = 0, . . . , t− 1, but there’s not enough time to make those queries sequentially. So if A1 does learn those
queries, some tuple (ij , π(ij)), 0 ≤ j < t was already known before the query π(ij−1) was made (by either
A0 or A1).

As at any timepoint in the game π is known on at most q = T0+T1
γ points, the output of π on a (yet

not known) input ij will be uniform over a set of size at least |F| − q, and thus hit any of the (at most q)
already known values with probability at most q/(|F| − q). Taking the union bound over all ij , 0 ≤ j < t
we get

Pr[A1 learns all π(ij), 0 ≤ j ≤ t in time t′ < t] ≤ q · t
|F| − q

If A1 did not learn all π(ij), 0 ≤ j ≤ t, the best it can do is guess the output (xt, yt), which again will
succeed with probability at most 1/(|F|−q). The bound in the theorem is the sum of the two probabilities
above.

4.2.4 An simple upper bound

It’s not clear how tight the bound in Theorem 1 is, but if we not just ask for t′ < t but make the gap
more substantial, say t′ = t− 10, the bound is obviously far from tight (in practice t is in the ballpark of
230, so a gap of 10 between t and t′ doesn’t matter).

The reason (why the bound is not tight) is that even if the adversary is lucky and causes a collision
between some already computed π value and the values on which π is queried during the evaluation on
the challenge input, this just means they can speed up the evaluation of MinRoot from t to t − 1 (or to
t− k if they find k collisions).

To break sequentiality by a significant amount it seems necessary to not just guess some inputs to π
that pop up during evaluation of the challenge, but to the entireMinRoot round function (this is equivalent
to guessing the input to π for two consecutive rounds). As the MinRoot round function is over a much
larger domain than π (|F|2 vs. |F|), the upper bound we get is much worse than the lower bound from
Theorem 1.
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Theorem 2 (Simple upper bound). In the setting of Theorem 1, for any t, d, T0 and T1 = t − d, a
(T0, T1, t− d) adversary can win the SEQVDF(A0,A1, λ, t) game with advantage

T0

γ · d · |F|2
(4.1)

Proof. We describe the adversary (A0,A1) that achieves the advantage as stated. A0 simply computes
MinRoot(zi, d) for as many distinct values z1, . . . , zs as the T0 budget allows. If the challenge to A1 falls
into this set, A1 can compute the output and win the game computing just the t − d remaining rounds
(in time t− d making t− d sequential queries to π).

To sample an input/output tuple for z,MinRoot(z, d) requires d queries to π or to π−1 (by sampling
the output and then inverting). The latter is cheaper and costs d · γ, this allows A0 to compute a total
of T0/d · γ such tuples. The probability that the challenge input will hit this set is T0

γ·d·|F|2 .

It seems reasonable to conjecture that (for practically relevant parameters, in particular T0 ≪ |F|
and d a sufficiently large constant) the simple upper bound from Thm. 2 is close to the real security of
MinRoot in the random permutation model. Let us mention a few observations on the bound in eq.(4.1).

The denominator in eq.(4.1) contains d, this d would be lost if instead of adding the round i in every
MinRoot round one would add some fixed value (as illustrated in MinRoot1π in Figure 4.1), so (assuming
the bound is indeed tight) this justifies the addition of the round function (or more generally, a value that
is different for every round).

The denominator also contains |F|2, which is thanks to the fact that the domain of the MinRoot round
function is |F| × |F| not just F. The upper bound in eq.(4.1) can only be close to the real security while
T0 ≪ |F|,2 which holds for the suggested 256 bit field. But this also means we cannot simply choose a
much smaller field and compensate for that by making the state of the round larger (say a 64 bit field
with a state of 8 field elements which would give the same 512 bit state as in MinRoot).

As a last observation let us note that the online complexity T1 = t− d of the attack is very small and
we don’t see how to make the attack better if T1 was much larger. This indicates that, unlike e.g. for
the time-memory trade-offs for inverting permutations we discussed before, the adversarial power during
the online phase is basically irrelevant. Let us stress that we only claim this for the case where the round
function is a random permutation, the situation might be very different if the operation is taking a cube
root in some (idealized) field.

4.2.5 A loose knowledge bound

In this section we will informally prove a simple “knowledge” type lower bound on sequentiality where an
adversary who outputs a valid tuple (x, y, t) with y = hMinRoot(m, t) at time τ must “know” m at time
τ − t. As mentioned in §4.1.4, we consider hMinRoot as MinRoot in trivially not secure in this sense.

Consider the setting of Theorem 1, but against hMinRoot, and where we consider a (T0, H0, T1, H1, γ, t
′)

adversary, where the additional H0, H1 parameters denote the number of oracle queries we allow A0 and
A1 to the H oracle. We assume that a query to H takes no time at all. As in Theorem 1, t′ < t can be
arbitrary close to t.

We consider a slightly different security game, where an extractor Extract gets as input all the oracle
queries made by A0, and then outputs a list F of “forbidden” inputs. In the second phase A1 only gets
F (and t), and wins the game if it outputs a tuple

(m, y = hMinRoot(m, t)) for any m ̸∈ F

The extractor we’ll use is particularly simple, it just outputs a list F that contains all queries made by
A0 to H, so |F| ≤ H0.

2In particular, once T0 = |F| we can just learn the entire function table of π and (in the game where we put no bound on
the state st) sequentiality is completely broken.
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Theorem 3 (Knowledge type security of hMinRoot). For any T0, H0, T1, H1 and t, any (T0, H0, T1, H1, γ, t
′ <

t) adversary (as defined above) can win the knowledge game (as outlined above) with probability at most

H1 ·
q · t+ 1

|F| − q
where q = (T0 + T1)/γ

(note that this is H0 times the bound from Theorem 1).

Proof. The above bound is, and directly follows from, the multi-challenge security bound as stated in
Theorem 1 when s = H1. To see this note that if A1 outputs (m, y),m ̸∈ F where it did not make the
query H(m), the output y is correct with probability only 1/|F|2 as there’s exactly one x s.t. y is correct
if and only if H(m) = x (A0 did not query H(m) as otherwise m would be in the forbidden list). So we
assume A1 did make the query H(m), but in this case we’re basically at the multi-challenge game where
A1 gets a set of s = H1 uniformly random challenges, namely the outputs of H on at most H1 queries
which it did not already make (as those are in the forbidden set F).
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Chapter 5

Theory 2 Group
Written by Bart Mennink

5.1 Introduction

This part attempts to develop a concrete, i.e., non-asymptotic, version of the definition of Boneh et
al. [BBBF18].

5.2 Concrete security definitions

Definition 1. Let f : X 7→ Y be a function. The function is (t, p, T,A,B, ε)-sequential if the following
conditions hold:

1. There exists an algorithm that can evaluate f(x) for any x in parallel time t on p processors.

2. For any algorithm A operating in T preprocessing time, t/A parallel time, and on pB processors,

the probability that it can compute f(x) for uniform random x
$←− X is at most ε. Stated differently:

Pr
x

$←−X
(A(x) 7→ y : f(x) = y) ≤ ε .

Here, we throughout assume T ≥ 0, A,B ≥ 1.

The definition differs from [BBBF18, Definition 6] in that it now explicitly includes preprocessing
and that the definition is parameterized with concrete values (t, p, T,A,B) instead of using asymptotics.
This explicit parameterization is convenient to make claims about schemes that are unprovable. The
preprocessing can be made explicit using a two-phase adversary (akin to [KMT22, Definition 4]) but it
does not seem to add much.

Reductions. The definition is not necessarily made to prove results with. However, some type of
reductions is possible. Suppose we take the MinRoot function [KMT22] with a random permutation.
Basically, a legitimate evaluation can evaluate the random permutation in t time (whatever t is) using
1 processor. However, even if you have an arbitrary amount of B ≥ 1 processors, you cannot compute
the permutation in < t time. The success probability of guessing y is 1/|prime|. The precomputation
does not matter in this setting. Thus, in the random permutation model, the construction would be
(t, 1, T, A,B, 1/|prime|)-sequential for any T,A,B.

In general, if a function f is (t, p, T,A,B, ε)-sequential, then it is also (t, p, T ′, A′, B′, ε)-sequential
for T ′ ≤ T (as this means less precomputation), A′ ≥ A (as this means less time) and B′ ≤ B (as
this means fewer processors). We can also make an observation about composition. Suppose that
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f is (t, p, T,A,B, ε)-sequential and g is (t′, p′, T ′, A′, B′, ε′)-sequential with p = p′, then g ◦ f is (t +
t′, p,min{T, T ′},max{A,A′},min{B,B′}, ε ·ε′)-sequential. The reduction becomes a bit clumsier if p ̸= p′

as it may influence the time t+ t′.
The cascade of an identical function f may be hard to investigate, the main reason being that weak-

nesses may span multiple rounds.

Comparison with attacks. Typically, we take t and p the time and processors for a legitimate system
to run f , i.e., f is ran in 1 unit of time and 1 processor. So the first condition is satisfied. Looking at the
attacks of the cryptanalysis team, they run with (A,B) ≈ (30, 240) or (A,B) ≈ (50, 250). It is yet unclear
how to bound the precomputation. Apart from this, this suggests that the MinRoot round function may
for example be (t, p, T, 35, 235, ε)-sequential or (t, p, T, 55, 245, ε)-sequential for some small ε and for some
appropriate T . This is still worse than what is claimed in the MinRoot specification, but at least the
definition allows to be explicit on what the number of allowed processors and the role of A (called Amax

in the presentations) is. These claims are mere suggestions and may not be accurate anymore in light of
newer cryptanalysis results.

Comparison with “Concrete security” of MinRoot paper. Compared with the “concrete secu-
rity” definition of [KMT22, Section 2.4], α is now ε, σ is now 1/A, T0 is now T , and nE is roughly
B.

Alternative but discarded definition. One notable alternative consideration was to swap the rea-
soning. It would state that, “if there exists an adversary that can run a system in t′ time and p′ processors,
then there must be a legitimate system that can run it it t = t′A time and in p′/B processors.” However,
the difference is that the adversary will get a random challenge and the legitimate system operates for
any x. Thus approach does not seem to work as desired.
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